Showing posts with label YouTube. Show all posts
Showing posts with label YouTube. Show all posts

Tuesday, 23 June 2020

Synthesizer Build part-34: TRIPLE WAVEFOLDER.

A wavefolder with three folding stages which produces amazing sounds and it's very easy to build too!

I came across this project on YouTube when I watched a video by YouTuber Adamski A. called "DIY analog synth project part 18 - The Wavefolder".

So I set about building it and it came out very well so I asked Adam for permission to write an article for my website, based on his project, to which he very enthusiastically replied in the affirmative so here it is; The Triple Wavefolder.
Like I said, it's a very simple design and in my experience those work the best. This wavefolder produces sounds that I would describe as sharp or hard and accurate. In some settings it almost resembles a Harpsichord or an electric piano. They can be real speaker rippers too. If you watch Adam's video (see link above) you can listen to the wavefolder in action. The latter part of the video is full of sound samples in different settings. I also made a little demo video myself which is at the bottom of this article. The sound is very different from that of the filters we've become so used to, with their resonance and cut-off frequency. It sometimes almost sounds like an FM synthesizer. That's why this is a very useful addition to any modular set-up because diversity in sound is what we all want don't we?
Now, I built the Yusynth Wavefolder after first building this because I thought that this triple wavefolder was more of an experimental thing and the Yusynth one would be the official implementation to go into my synthesizer. But the Yusynth one only has a single folding stage and eventhough that sounds amazing too, I found that this one actually sounded even better. So I made a panel for it and mounted it in my synthesizer. The voltage it runs on has an influence on the number of folds you can get so changing the value of the 22K resistors going to the emitters of the transistors influences the behaviour of this circuit.

This wavefolder works best with Triangle or Sawtooth waves or even Sinewaves but Squarewaves pass through almost unchanged. That's convenient because squarewaves are best used for conventional filters because of their harmonic content.

Adding CV control to the parameters:
This wavefolder has in it's original form only three controls; the input level or 'Amount', the Dry/Wet control and a Saturation control. As an experiment I added voltage control to two of those, the Amount and Saturation by means of two self-made Vactrols connected between pins 2 and 3 of the respective potmeters.
These vactrols are made up of a bright white LED, a Light Dependent Resistor (LDR) and a 2K2 current limiting resistor connected together with some heat-shrink tubing that seals it off from any light from the outside.
These Vactrols both have their own level potmeter too so you can dial in the effect it has very accurately. I've had questions about what LDR's you should order for these and I really can't tell you. I had mine in stock for ages. A while back I ordered a batch of 5 x 10 LDR's from China. 5 different values with 10 of each value. They all have a dark-resistance of at least 100 Mega Ohm and a full light resistance around 1 Kilo Ohm or lower. That's all I can say. You can also buy Vactrols ready made like the VTL5C3 which should work fine here.
Even better than a Vactrol, at least for the Amount parameter, is to use a VCA on the Wavefolder input, That way you can control the level and thus the Amount by sending a Control Voltage into the VCA. This works much better and it's what Adam also demonstrates in his video. (See the 'Metalizer' project elsewhere on this website. That is in principle a quadruple wavefolder with a VCA on the input.)
In the video demonstration the vactrols didn't have that much effect but I had forgotten that the potmeters for Amount and Saturation need to be set a good way counterclockwise for the Vactrols to take full effect. And in that sense you could in principle do away with the CV Level potmeters because the Amount and Saturation potmeters have that function too for Control Voltages. But you must not forget that this module was built first and foremost as an experiment that I didn't think I would publish. 
Anyway, you could decided to leave the CV inputs out alltogether, it's up to you.

THE GAIN CONTROL:
The other thing I addressed was the fact that the Amount control is also the Amplitude or Volume control so turning it up increases the volume and turning it down decreases it. For that reason I added a Gain potmeter to the output opamp which increases the volume by a factor of 2 to 22 times!! This option is a game changer for this wavefolder especially with this much Gain! This gives you the possibility to really boost the sound output and it sounds awesome I can tell you. You can really boost the lower and mid ranges of the Amount potmeter to match the high output level when Amount is fully open. I even found that opening up the gain helps to level out the output amplitude across most of the Amount potmeter throw without really clipping the output. But even if it does clip, it adds a very musical sort of distortion to the sound. It's never unpleasant to listen to.

Here's the schematic drawing of the Triple Wavefolder by Adamski A. I have re-drawn it and added the Vactrols to it. I mention on the schematic that you can also use BC transistors instead of the 2N transistors I used, but that will influence the sound or the number of folds you get because BC transistors have a greater multiplication factor. You can of course experiment with that by setting up the circuit on a breadboard first. (Btw, the BC548 and BC558 can also be BC547 and BC557 types.) The CV-Level control potmeters are not included in the schematic. This is because I added the CV control as a bit of an after-thought to see how it would work out. Like I mentioned before you don't have to include the Vactrols and CV level controls. I leave that up to you.

(Last revised: 11-July-2020: Changed GAIN potmeter from 20K to 100K.)

Here's the stripboard layout. It's verified because I used this for my own build. All potmeters are viewed from the front side with shaft facing you!
(Wiring diagram):

(Last revised: 11-July-2020: Changed GAIN potmeter from 20K to 100K.)

Print only. Note that pins 5 and 10 of the TL084 are connected underneath the chip!!:



Bill of Materials.


15V vs 12V and de-coupling:
As you can see a very simple and easy to build project and it sounds amazing so I can really recommend trying this one out. The circuit is meant to work on a dual 15V powersupply but I tested it on 12V and it works just fine but changing the voltage does influence the number of folds you get so it sounds a bit different but it still works fine, trust me =)
I did not include any de-coupling capacitors in the schematic because I didn't use any but if you need to have those included just put a 100nF from plus to ground and a 100nF from ground to minus and place them as near to the TL chip as possible. Should you have problems with hum, you can also add a few electrolithic caps (22µF or 33µF) on the plus and minus rails like the other caps and you can also try putting Ferrite Beads in series with the plus and minus power supply input, or if you don't have them, a few 10 Ohm resistors. There's plenty of room on the stripboard for that. But you only need to do that if you're having problems with hum or noise in the audio output.

Here's a picture of the finished panel:


Here's a look at the stripboard: I see from these pictures I added an extra opamp to the output but because I actually built this module a while ago I can't remember why I did that. Probably to have more room to experiment with the output and add the Gain potmeter. Anyway, it works the same so you don't have to include that.




And, to close off this article, I made a video demonstrating the different settings and the sounds they produce. As you can read in the article, I recently changed the GAIN potmeter from a 20K into a 100K one giving a total gain of up to 22 times. This gives the option of boosting the middle range of the Wavefolder which sounds really awesome!!


Here's a video that's also posted in the "Sample and Hold" article. It's a triangle wave going through the Triple Wavefolder and then through the Steiner-Parker filter, fed by random notes from the Sample and Hold connected to the CV-2 input of the VCO.


Okay that's an other project done. I hope you enjoyed it. Check out Adamski A. 's youtube channel. It is full of awesome synthesizer projects and electronics tutorials. It's an enormous source of inspiration for anyone interested in building synthesizers.
As always, any questions or remarks, please put them in the comments below or post them on the new EB Projects Facebook Group.


Monday, 18 September 2017

81 LED Chaser circuit using 2 NE555's!

Hi everyone!

This last week I've been busy making a little LED chaser circuit. I found a schematic online that used one NE555 to drive two CD4017 decade counter chips that drive the LED's. I thought I could improve on that by adding a second NE555 and it worked beautifully.
BTW, AliExpress now sell a kit of this design, only it has 9 x 9 LEDS, for about $5,-

I started out by building the LED display on a separate perforated circuitboard. I wanted to have the LEDs very close together to get a nice dense row of lights and the board I used was exactly the right size to fit a 9 by 9 LED matrix. I used 5mm LEDs because I have about a thousand of those in my junk box, salvaged from an old display unit. They had short leads but long enough to still use. I used a green perforated circuit board but to fit them on next to eachother I had to trim each LED on 4 sides with a Dremel tool because these LEDs have a broad rim at the bottom. Anyway, I managed to fit them all on the board in a 9x9 matrix. Then I soldered all the Cathodes together, row by row. Then the same for the Anodes, to give me an X and Y axis to work with.
You can use other types of LEDs if you want and choose a resistor value for the collectors of the transistors that works best with your preferred LEDs. Test the LED/Resistor combination on a breadboard and choose a value that makes the LED shine at normal brightness.

After that I started soldering the actual circuit.
Now, the original schematic, that you can find on the internet, only uses one NE555 to drive the movement of the LED lights and so you can really only change the speed of the X-axis of the display, or the Y-axis according to the schematic below, but I soldered the display in such a way that the initial movement was horizontal. So I thought why not add an extra NE555 and make the Y-axis adjustable aswell so you can get much more variation in the patterns displayed. So that's what I did. I made a new schematic and here it is: (Btw, the collectors of the vertical row of transisitors are all connected to the + of the power rail, just like the top transistor. It's not shown in the schematic because that would make the drawing very messy.)
(Click on the images to see them in full scale and right click to download them.)




Btw, instead of using the BC547 transistors you could also use the 2N3904 but in that case you need to change the 220 Ohm resistors for 100 Ohm resistors, but my advise would be to test the LED/resistor combination on a breadboard and see which resistor value works best and makes the LED shine at a normal brightness. You could also try 2N2222 transistors). The 10K's at the Base of the transistors should always be the same to protect the Base input.

OSCILLATION PROBLEMS (solved ^__^):
After having soldered on the first NE555 squarewave generator, I tested the output signal with my oscilloscope and I found that there were bursts of pulses with a frequency of about 60kHz on the output squarewave. This is a common problem of the NE555 which does not occur with the CMOS version ICM7555.
Here's a screenshot of the Squarewave from the NE555 with the pulses on top:


I added a big electrolytic capacitor of 470 µF to the output of the voltage regulator and that solved the problem. I proceeded to solder in the rest of the components. The 10K resistors for the base of the transistors I stuck into the same hole as the base, to save space. I had a bunch of cheap resistors from China which had very thin leads so they just fitted into the hole together with the base of the BC547s. That way I only needed 4 holes per transistor resistor combination.
I tested the circuit a few times during assembly to make sure everything worked because once it was all put together it would be very difficult to trouble shoot this thing with all the wires going everywhere. Luckily it all worked as I had imagined, especially the second NE555. It worked just as I thought it would do. I had a problem though with the two 100K potmeters. The ones I used were old ones from a valve radio and they turned out not to be up to the job. I didn't have more 100K pots but luckily I did have two 50K stereo potmeters, so I soldered the wires on, in such a way that the double 50K was in series and formed one 100K potentiometer and that worked very well. It's important that the potmeter goes all the way down to zero Ohm to get the fast movement of the LEDs and the ones I used did that very well.
Btw, if you decide to build this and want the display to appear as I have it in my video, with the lights going from left to right working their way down, you'll need to experiment with how you solder the wires from the transistors to the display. The way it's drawn in the schematic the light would go from top to bottom instead of left to right down the rows. Beware of that.

I made a video about this circuit which shows how it works with a little animation sequence, which you can watch here:



TESTING:
I did some measurements of the pulses and they are pretty messy to look at but they work just fine to trigger the CD4017s. I was surprised at the fast rise-time of the output pulses from the 4017s. They rise in about 12 nano seconds! Here are some screenshots from the scope:

This is the X-axis pulse going to the LEDs:



This is the Y-axis pulse going to the LEDs:




Here's a closeup of the rising edge of the output pulses showing how fast they rise. You could build a Time Domain Reflectometer with pulses this fast:



So now that I had it all working, I decided to round off this project by building the whole thing into a nice case. I found an old sewing tin which had just the right size. I spray painted it black and with a Dremel tool I made holes for the display and the knobs. Then using hot glue I glued in the display board. I left the board with the actual electronics on it floating. I didn't glue it down. All the wires connecting it to the display were enough to keep it in place and I needed the lid to be removable to make it possible to exchange the battery. I used a 9 volt battery which I kept in place with a strip of copper, bent to fit around the battery and glued to the bottom of the case. I lined the inside of the case with gaffer tape to prevent accidental short circuits should the print touch the case. I had just received a batch of knobs from China that looked a lot like the knobs on a Mini-Moog synthesizer and I put those on the potmeters.
After it was all assembled it looked like this:


This is the inside of the case:

(The hot glue underneath was meant to protect the wiring when I was testing the circuit.)

Doesn't it look cool?? Of course it doesn't do anything useful, but it's so much fun to play around with and also to build. Actually, you could use it as a game: try and make a diagonal line appear that doesn't move across the screen. It's possible but requires a very delicate touch on the controls. Perfect to while away those busy office hours, lol! And you could use it as a prop for a movie. Say like an artificial scanner of some sort, for tracking down ghosts  ^___^

Okay that concludes this blog post. I hope you enjoyed it and if you did please leave a comment, either here on on the YouTube video. If you want to support my channel you can do so by subscribing. That would really help me out and it costs you nothing :) Win/win situation!  :) But please leave a comment. I always love to hear from you!!
I've also recently opened a Patreon Page through which you can support my work. I don't have any rewards set up as of yet but I will in the very near future. Here's the link:
https://www.patreon.com/EdEditz