Friday 10 February 2023

Synthesizer Build part-50: UTILITY LFO for EURORACK

This is the Ken Stone Utility LFO, the bigger version of project 47 with an extra feature that I added. I managed to make the stripboard even smaller than the 'Simple Dual LFO' so it fits even the 'Nifty Case' Eurorack skiff. The LFO has the following waveforms: Pulse, Square, Saw to Triangle to Rampwave and a Variable output which has a mix between Square and Triangle/Saw/Ramp waves. I later added a mini-mixer that adds the two variable outputs together to get even weirder waveforms.

An other LFO might not be the most exciting of projects but I think this LFO will be worth it because of the weird waveforms it can make and because I realized, now that I have my own Eurorack system, that modulation sources are important to have. To quote a popular YouTuber: Modulation is what makes Eurorack interesting. I even added a feature of my own later on. It's the ability to mix both variable outputs together to get a variable A+B output. That's at the bottom of this article.
The Dual LFO from project 47 is just the first two stages of the Utility LFO without the mixing stage. Because I actually use the Dual mixer in my Eurorack setup and I loved the idea of having the full Utility LFO available, I thought I'd build the whole LFO this time and try and make it as small as possible. It is 49mm deep and the panel is 9HP wide (4.5 centimeter). This is a bi-polar LFO meaning the waveforms go both positive and negative in voltage.
This LFO does not have a sync option but this is a really useful LFO for a Eurorack system because it has not only the normal waveforms you'd expect but the option to merge waveforms together which makes for some very weird modulation possibilities. And because this is a Dual LFO you could mix the 2 variable waveform outputs together in a Multiple and make even weirder shaped waveforms. That mixing needs to be done outside of this module though. I couldn't fit that inside this design. This LFO would pair really well with the Dual Voltage Processor for that reason.
I managed to get everything on an 18 by 24 hole wide piece of stripboard. Six potmeters and eight output sockets on the panel, and an extra little print for the two bi-colour rate indicator LEDs which I made separate from the main print just like on the Dual LFO and as mentioned before a second little print to mix the two variable outputs together. The panel I made for it is 9 HP wide (4.5 centimeter). You might be able to make it even smaller if you use smaller potmeters in the panel. Even though I included an L-Bracket in the layout, I didn't use one. The stripboard is actually hot-glued in place in between the two columns of potmeters straight to the back of the panel making sure no copper strips make contact with the metal of the panel. I did this to keep the overall depth of the module as low as possible.
I did not include a Eurorack power connector on the print although there is room enough left to put one in. Instead I made a powercord with a Eurorack connector at the end so it always stays connected to the stripboard. This is handier because eurorack ribbon cables take up space too and this is a smaller footprint solution with only three thin wires.
This is mainly a Eurorack project but naturally this circuit will work just as well in a Kosmo sized synthesizer. I optimized the circuit to run on +/-12V but it was originally intended to be run on +/-15V. You will get higher amplitude waveforms when you run this on a dual 15V powersupply so if that's a problem for you, you can change the 1K8 resistors I used on the waveform outputs back to the 1K's you see in the schematic. The original schematic uses +/-15V.

SCHEMATIC:
Below is the schematic I used for my layout. I put in bigger timing capacitors because I wanted one LFO running really slow and the other to about 20Hz. That is more useful for my modulation needs but you might want different values so I strongly advise you to do some testing with different capacitor values to get the LFO in the frequency range you desire.
The types of quad opamps and the one dual opamp used in this project are not critical. The schematic calls for TL074 and TL072 opamps but you can use anything with the same pinout. I used two LM324's and an NE5532 dual opamp. Btw, I did not include the transistor with the rate LED as seen on the schematic but I designed my own circuit for that so I could use bi-coloured LED's. It's just two opamp voltage followers (or buffers) feeding the LED's with the signal from the Pulse output. You can connect them to any output you wish but the pulse is the clearest for the LED's.
Here's the schematic drawing. Beware the opamp numbering does not follow the opamp order I used in the layout.
  

LAYOUTS:
Below are the layouts I made for this project. As ever they are verified. I used them for my build. I changed the order of the opamps used from the order on the schematic. I setup one LFO using all the opamps on the left hand side and the other LFO using all the opamps on the righthand side of the IC's on the stripboard. That made it more compact plus easier to keep the overview. Luckily I did not need to make any changes or do any troubleshooting. I built it and tested it and everything worked first go.
You need four 100K and two 500K linear panel potmeters to this project. Measure and test them before you use them. That can save you some troubleshooting later. If you plan on mounting the stripboard to the panel with hot-glue like I did then try to solder the hook-up wires of the righthand side (the side that's glued to the front panel) as far to the middle as possible so you can still get to them once the stripboard is glued in place. This won't be possible with all wires but try. You could also solder them straight to the back/copper side.
Wiring diagram:


Stripboard only view:

Here are the cuts and wirebridges as seen from the component side! As always, I advise to mark the cuts on the component side first with a black waterproof marker pen and then put a pin through the marked holes and mark them again on the copper side. Then you can make the cuts accurately and you can see where the cuts are when you're soldering in the components.


Bill of materials. 
The timing capacitors listed were chosen for my specific needs. I advise you to go by the schematic (47nF) or else test and determine the best values for your needs. You can use the Falstad simulation linked at the bottom of the article to test different values before building.
No bypass caps are included in this BOM because I didn't use any. They are on the schematic and you can put 100nF caps over the power connections on the IC's to ground if you want to. To do all IC's you'd need six 100nF ceramic caps (you don't have to do the LED driver IC).
This BOM does not include the components for the little mixer I added on further down the article. For that you will need 4 x 100K resistors, a 1K resistor and a 200K trimpot and a TL072 dual opamp.


PICTURES:
Here are some pictures of the build proces and the panel I made for it. I had some fill-in panels left from when I bought my 'Nifty Case' Eurorack case and I used one of them to make my front panel. It was already cut to the right height so ideal for this project ^___^  All I had to do was cut off a piece that was 4.5cm wide (9HP) and spray paint it. I labeled everything with an Edding 400 marker pen.

Wirebridges and cuts. I made some minor changes to the layout after I built this so there are a few discrepancies between this picture and the current layout.


Stripboard ready for testing side A:

Panel, not yet labelled:

The finished module with the little 10 by 6 hole stripboard for the rate indicator LED's glued to the back of one of the potmeters. If you look closely at the sockets you can see I soldered all ground connections together with one copperwire going round them all. A wire goes from there to the ground connection on the stripboard.


The finished product:


Here's a little demo video I made showing the LFO in action in a little Eurorack setup. You can hear how the 'Pico Voice' VCO changes in sound as I connect the LFO to it. But then I get distracted by the Pico DSP effects module and the 2hp Freez, LOL. Oh well. You can hear the difference it makes anyway :)


(As you may have noticed, I really suck at making demo videos, LOL)

WAVEFORMS:
Here are some screenshots from the oscilloscope showing some of the waveforms. The one below shows the sharpest a sawtooth wave you can get. Pretty fast rise!


Cursor readings at LFO-B squarewave output:


Here is a collection of variable output readings from Variable output B:


To give you an idea of what can be achieved by mixing the two variable outputs in a simple passive multiple, here are eight images I put together to give you an impression. This should sound awesome with very slow running LFO's which is why I soldered a few more caps in parallel over the timing cap of LFO-B.


You can imagine that some of these waveforms, when put through a quantizer, would generate awesome melody- or bass-lines that can be easily manipulated with the LFO parameters. I tried to capture a little of that in the demo video I posted below.

Here's some technical data from the LFO:
LFO A: freq. range: 270mHz to 24Hz. 
LFO B: freq. range.: 41mHz (one full cycle every 24 seconds using a 650nF cap) to 2Hz.
Duty cycle of the pulsewave output goes between 2% and 98%. I made a mistake and used a 100K potmeter for the Shape but it needs a 500K potmeter. I only had one 500K pot so I put it in LFO B and the screenschots above are from that LFO. You can use a 100K for shape but that will significantly lower the range of the duty cycle (20 to 80%) also the slope of the Saw-/Rampwaves will be slower rising. It will also speed up the overall frequency of the LFO.
Maximum current draw = 20mA for both the positive and negative side.
The maximum amplitude of the waveforms is about +/-5V except for the Variable waveform output. When that potmeter is set to the mid point the output amplitude drops to about +/-2.5V because the potmeter acts as a voltage divider so in the mid position the amplitude is half of what it is when it is fully clockwise or counter clockwise. (We effectively have two 50K resistors on either side of the wiper of the 100K potmeter.) These may seem like low voltages but keep in mind that an LFO is usually attenuated anyway because if the changes are too big it just doesn't sound good on a VCO or in most patches. If you really need higher voltages you can make the 1K8 resistors on the outputs even bigger.

Here's the link to the Falstad simulation of this circuit. This is the Dual version with one speed potmeter at 100K and the other at 500K as it is in my LFO. You can change these variables by right clicking on them and choosing 'Edit':

EXTRA FEATURE:
Okay as I write this it is four days since I posted this article and the cool looking results from the mixed variable outputs kept going through my mind. I really wanted to incorporate that into this design and now I found a way. I used an other small piece of stripboard on which I soldered a dual opamp and wired it up like the mixer in article 17 with 2 inputs. I knew there was no way to put an extra output socket on my panel so I sacrificed the squarewave output of LFO-B. That was the least useful of the outputs because I can get a squarewave anyway from the pulse output if I need one and I still have the squarewave of LFO-A. So I carefully soldered in the little mixer print which was just as big as the little LED driver and wired it all up and I re-labelled Square output B into 'Vari A+B'. I used a 200K trimmer to go over the inverting input of the second opamp and the output so I could adjust the gain and make it a little higher than the Variable outputs. I placed the little print above the sockets and used hot-glue to stick it in place. It is actually glued to the little LED driver board. This works perfectly! Now I have an output with two variable waveforms mixed together coming out of it.
Here is a picture showing how I added the mixer. I used two rigid copper wires to tap the signals from the sockets and lead them into the mixer. The non-inverting inputs of the opamps are connected to ground on the copper side:


Here's the layout of this little mixer. Mine is even smaller than this layout, but this will work fine. All resistors are 100K:

Here's the schematic for this little mixer:


DEMO VIDEO:
Finally I want to show you a little experiment I did using the new output. I put the Variable A+B signal through a quantizer (the 2hp Tune) and from there into the Pico Voice Wavetable Oscillator. The audio then went through the Pico DSP for some added reverb. You can really generate the weirdest melodies with this although this setup would benefit from the Voltage Processor because the negative phase of the signal does not produce any notes so it needs a positive offset voltage and the signal can do with some attenuation to get the notes closer together but I think you get the idea watching this short demo:


Okay, that's it for now. Article 50, wow I can hardly believe it. This journey started for me in October 2019 and I knew nothing about synthesizers then, but I was determined to get to grips with it and learn as much as possible. And what better way to learn then to build your own modular. So here we are more then 3 years and 50 projects later with a cool collection of builds helping hundreds of people to do the same. I'm really proud of what, not only I created but also of all the people who helped so much along the way with comments and directions. I'm not gonna name names but you know who you are, all of you. Thank you!! So many people told me they find the site a great help in their hobby and that's the biggest reward I could wish for. I am however going to wind down the DIY aspect of the hobby because having now built my own system and also haven gotten into Eurorack, I need to spend more time actually using it and figuring out how to use it all together. But I will remain available on Facebook and here to answer questions and help as much as I can to ensure you have a good experience using this website and get as much enjoyment out of it as I did.

If you have any questions please put them in the comments below or post them on the special Facebook Group for this website where there are some awesome people willing to answer your questions.

If you find these projects helpful and would like to support the website and its upkeep then you can buy me a Coffee. There's a button for that underneath the menu if you're on a PC or Mac. Or you can use this PayPal.Me link to donate directly. All donations go towards the website and projects. Thank you!

8 comments:

  1. Hi, Eddy! Great website! I might build everything you have here because I am also into DIY modular synths. One question (out of curiosity): where did you learn how to transfer circuits to perfboards? This is something incredible for me...

    ReplyDelete
    Replies
    1. Hi Dmytro! I'm glad you like the website. I learnt how to translate schematics to stripboard simply by trying. At the beginning I just made drawings with pencil on paper and then someone told me about this free software DIYLC and that made it much easier. It's simply a matter of reproducing the connections you see in the schematic on the stripboard. After a while I got really good at it because I was doing it almost every day for 2 years :) Have fun building and feel free to ask questions if you need any help.

      Delete
    2. Thanks, Eddy! This is very nice of you to help others.

      Delete
  2. Hoi Eddy, bij het testen van mijn build viel me op dat de Var-A en Var-B pot omgewisseld waren, maar ik merk dat je dat al hebt aangepast in je layout (samen met de ontbrekende ground-verbinding op de LED-indicator). Ik heb nog een oude print gebruikt. Ik had me voorgenomen even een pauze in te lassen, maar ben dan toch aan de VCLFO-10 begonnen. De potmeters voor de verschillende modes ga ik wel vervangen door rotary switches, zoals beschreven in de datasheet (lijkt me handiger dan een potmeter). Het enige dat ik daarna nog kan bedenken voor mijn set-up is een eenvoudige cv-mixer en midi-thru. Ik ben verder al overcompleet.

    ReplyDelete
    Replies
    1. Ja die had ik per ongeluk verkeerd om gezet maar is nu correct. De VCLFO is een mooi project. Het mooie van dit alles is dat je het zo kunt bouwen zoals jou het beste uitkomt. Suc6 met het bouwen!

      Delete
  3. Wat ik extra voorzien heb in mijn build is een rate-switch waarmee ik per LFO kan switchen tussen snel en traag. Die switch bepaalt de keuze van de condensator die gebruikt wordt om de snelheid te bepalen.

    ReplyDelete
  4. Hi, I was wondering if the last 2 pictures of the oscilloscope are made with the mixer extension board or if they are produced with the main board itself

    ReplyDelete
    Replies
    1. Only last oscilloscope picture with the 8 screenshots was made with the mixer option. The rest shows the standard outputs.

      Delete

Note: comments are moderated and do not appear straightaway. Your first comment is not allowed to contain any links.