This is the Digisound-80 VCO. The answer to my DIY VCO prayers. Easy to build, easy to tune and all the extra's like Synchronization, Frequency-Modulation and PWM. And now there's also a Sinewave output.
Not only is this VCO easy to build, it can actually be tuned easily too. Before I found this, I used the datasheet VCO schematic for the AS3340 using the stripboard design from the LookMumNoComputer website. I could never get that VCO in tune over a wide range of octaves and I couldn't get it to play really deep tones either. I think the fact that he left out the HF tracking had something to do with that. This 'new' design however changed all that! After looking through all sorts of VCO schematics I decided to go for the Digisound 80 design and I added the
later on as a separate print. But we are concentrating on the main VCO and
. I can tell you, these VCO's (I built five so far) sound soooo much better than the Datasheet VCO. Of course it's the same waveforms but the range is so much bigger (0.1Hz to 50kHz!) and tuning this VCO is a breeze! And this Digisound design isn't even that different from the Datasheet design. Except for the extra trimmer, the Hard Sync options and a few resistor value changes, but this makes all the difference in the world. As a first time synth builder and having been into modular synths for only 6 months (at the time of writing this article) this VCO was a real revelation for me. You can even use this VCO as an LFO, a Low Frequency Oscillator, because it goes down to 0.1Hz. If you're looking for a good AS3340 VCO to build, I think this is it. It certainly is perfect for my synthesizer DIY project.
Here's the new version of the schematic with all the opamp buffer stages drawn in. All the outputs are buffered and the same with the PWM input. So a total of 4 buffer stages are used here, all housed in one IC, the TL074. You can also use a TL084. (There's a link at the bottom of this article to the original text and schematic.) I did not include any de-coupling caps in this schematic because I don't use them. If you have a normal linear dual power supply there should be no need for de-coupling but I have included them in the stripboard layout.
The stripboard layout I made from this schematic (further down the article) is verified and the placing of the buffer stages follows the numbering on the schematic drawing. For the Octaves control I recommend you use a 100K potmeter with a center detent. You know the ones they use for balance control on amplifiers with a little click you can feel when you reach the center point. This is very useful to easily re-tune the VCO after you've been using the Octaves control knob. Use a normal 100K potmeter for the Frequency Fine control though, not one with a center detent because you need accuracy around the center settings.
I put in a 47K resistor for R21 which is the pull down resistor for the squarewave output. It originally was a 10K resistor in the Digisound-80 circuit, because the CEM3340 chip was used, and that will work fine too. (Use 10K if you're using a CEM chip) It's stated in the datasheet for the AS3340 that it needs to be 51K but in practice it doesn't matter at all, so I use 47K. For the current limiting resistor (R23) I put in a 1K. This is necessary because we will connect it to negative 15 Volt. It says to use a 910 Ohm in the schematics but I always play it safe and use a 1K resistor. Use a good quality polystyrene or polyester or silver mica type capacitor for C7 (1nF). This is the frequency determining capacitor and must be stable with temperature changes. So do not use a ceramic capacitor for C7. When soldering in a polystyrene capacitor, make sure you don't heat it up too much! These types of capacitors can change their value if they get too hot from soldering and when they cool down the value will stay changed. But don't worry, with normal soldering they will be fine and I never had problems with them myself. Some polystyrene capacitors have a black line on one side. This indicates the leg that is connected to the outer layer of aluminium that makes up the capacitor. This pin should be connected to ground, that way it will act as shielding against hum. If it doesn't have a stripe, just put it in anyway you want. It'll work fine.
Running this VCO on a dual 12V powersupply:
If you're going to use this VCO with a dual 12 Volt power supply (Eurorack) then use a 680 Ohm resistor for R23. (On the stripboard layout R23 is the 1K resistor going from pin 3 of the AS3340 to the negative 15 Volt rail.) It doesn't matter if you are using the CEM3340 or the AS3340 ICs..
Further down this article, in the 'Tuning' section, I mention that if you experience problems with tuning while running this VCO at 12V, you can make R4 bigger. Use a 270K or even a 300K resistor instead of the 200K. Some people experienced problems because trimpot-A was at its end before the VCO was in tune. Making R4 bigger will prevent that. (It's not always necessary to make this change though.)
When running this on dual 12V you must also change C7 from 1nF to 0.5nF or 500pF. Otherwise you'll only get very low frequencies out of this VCO. This is not in the Datasheet but it has been established by feedback from many readers who built this VCO for Eurorack. Again, this change is also not always necessary but I leave it up to you. Many people commented that they needed to do this change to get it working right on 12V. Instead of 500pF which may be hard to find you can also use a 470pF capacitor as long as it's not a ceramic one.
Lastly change R18, the resistor connected to the PWM potmeter to 18K or 20K or 21K (which ever value you have to hand) to make full use of the throw of the pulse width modulation potmeter. You could even put in a 33K trimpot and the set is so that the voltage over the PWM potmeter is exactly +10V but it's not necessary to go that far. A resistor is fine as long as the value is around the 20K, plus or minus 2K.
So to sum up the changes you need to make for +/-12V operation:
- Change R23 to 680 Ohm.
- Change the Timing Capacitor C7 from 1nF to 500pF (0.5nF). 470pF will work too.
- Change resistor R4 for a 270K or 300K resistor to assist tuning.
- Change R18 to 18K, 20K or 21K.
Further hints and tips:
The potmeter for High Frequency Tracking or Linearity can be a normal trimpot, not a multi-turn one. The influence it has is minimal. But you must use multi-turn trimpots for A and B on the layout, otherwise tuning will become very difficult. I used metal film resistors with 1% tolerance in those places where it matters and this is good enough. In fact, I used cheap 1% resistors from China and they are not 1% but more like 3% but this is still good enough. But the 100K CV input resistors should all be measured and matched so they all have the same resistance value. This makes it easier when you connect different CV sources to those inputs, they will be in tune straight away. I was surprised that the two 100K potmeters I used in the panel for Octaves and for Fine Tune give exactly the range that is stated in the original description although the Octaves control is not linear, at least mine wasn't but maybe that is due to the potmeters with center detent I used. Octaves is plus and minus 5 octaves and Fine is plus and minus half an octave. I'm not used to things actually working out as originally described in DIY projects. It's usually either a bit off or way off but the Digisound 80 designs are really good and spot on.
About Pulse Width Modulation:
Pulse Width Modulation is now also spot on. Before the 18th of October 2020 I had the PWM connected as is shown in the original schematics in the PDF file linked below (in series with the wiper of the PWM potmeter) but that didn't work perfectly. There was a significant amount of throw left on the potmeter when you reached the 100% mark. However, I got a suggestion in the comments below to move R18 from the wiper of the PWM potmeter to pin 1, the +15V connection to the potmeter, and that did the trick.
I should have realized this myself it's so obvious. The 47K resistor R18 forms a voltage devider with the 100K potmeter that takes off 5V from the +15V supply and leaves the potmeter with +10V on pin 1. This is then halved by the voltage devider made up of R19 and R20 (both 47K) to feed the chip with 0 to +5V, which is exactly what it needs for the correct pulse width modulation.
This Pulse Width problem was really buggin' me because it was the only thing that was not working right in this design but now that is solved too.
The results I get are as follows: With the PWM potmeter fully counter clockwise I get 0% pulse width, meaning that there is no signal, just a flat line. Then as I turn it clockwise the pulse appears and goes through the percentages to stop at 99% pulse width when the potmeter is turned fully clockwise. So fully clockwise there's a very thin pulse left over. This is absolutely perfect. Of course your results can differ a tiny bit because of resistor tolerances but I got the same results with all 4 of my VCO's.
So if you are using this VCO with a Eurorack powersupply of +/-12V you need resistor R18 to be near to 20K. (21K or 18K will work fine I think. The schematic and layouts have all been updated with the new R18 position.)
For external Pulse Width Modulation you need a signal that goes from 0 to +10V on the PWM input jack. This can be a problem if you use this VCO in a Eurorack setting where the signals are usually -5/+5V. Just so you know. But there are LFO designs on my website that will give you the 0V to +10V output option you need. You can also use a module like the
Dual Voltage Processor to give a +5V DC-Offset voltage to the control voltage and then use it for Pulse Width Modulation.
Temperature Compensation:
Don't place this VCO directly over the power supply in your modular set-up. If it gets influenced by the heat from the voltage regulators too much it can de-tune a bit but I think this is true of almost all VCO's. The AS3340 has internal temperature compensation but this only really works for changes in room temperature. If you put it over a heat source like a power supply it will most definitely de-tune. Of course other components around the chip will also warm up and add to the de-tuning of the VCO when influenced by the heat from the powersupply.
Here's the layout. I didn't put in the input jacks for the sync inputs or the output jacks for the wave forms and CV-OUT. It's already spaghetti junction and that would make it even worse. I assume you know how to hook up jack sockets. All potmeters are frontal view with shaft facing you. I have recently added 100nF decoupling capacitors directly between the IC's and 22µF electrolytic capacitors on the power rails, because this came up on Facebook. These are not included in the schematic drawing but they are in the original schematic in the PDF linked below. (You can use any value for the electrolytic caps between 10µF and a 100µF as long as they are 25V or over.) There's an extra CV input marked on the layout. This is just incase you want to permanently connect something, like a sequencer, to the VCO and don't want to sacrifice an existing CV input for that. (If you don't need it, there's no need to include it.) Here's the wiring diagram:
(Last revised: 18-Oct.-2020: Changed position of R18 from the wiper of the PWM potmeter to between the +15V and pin 1 of the PWM potmeter. I also changed the colour of the capacitors to be in line with other layouts and I made the wirebridges that connect to ground a green colour for clarity.)
And here's a close-up of the print. Don't forget to cut the copper strip underneath the 1M resistor above trimpot A. (Position A-31) The cut is difficult to see on the layout but it's there of course, otherwise the resistor wouldn't work:
Bill of Materials.
(07-June-2020 Revised version. Numbering now follows numbering on schematic.)
Please note there's an extra Triangle to Sinewave converter print you can add to the VCO, to give it a Sinewave output, at the bottom of this article!
Here's a look at the finished stripboard. I soldered on a little copper eye to make mounting the print on the particular panel I made easier, but there's room enough left on the print to drill a few holes to mount it however you like. Make sure the copper traces are cut so no contact is made with the bolt and nut etc. In this picture you can also see the annoying little circle at the bottom of the AS3340 chip. Do NOT mistake this for the pin-1 indicator, and put the chip in the wrong way as I once did!! I had the chip mounted in the socket the wrong way around and had it switched on for about 20 seconds. It got so hot that I could smell it, that's what allerted me, and I switched it off immediately thinking the chip would be waisted but no, it survived! (They call that 'burning in the chip', LOL. DON'T TRY IT!)
Here are the two identical VCOs side by side in my synth. You can see a 'Tuner' and 'Sync Out' output, which I added lately. More on that in the 'Synchronizing' section below:
About the CV-OUT connector:
You can see in the picture that I have CV-OUT jacks on the VCO's. These are simply
in parallel over the 1V/Oct. input jack so I can daisy-chain more VCO's to one 1V/Oct. signal so that all VCO's receive the 1V/Oct signal from the Doepfer A-190-3 MIDI to CV converter. This is not included in the stripboard layouts but you can see it in the schematic drawing. If you use the
Dual Buffered Multiple described on this website, then you don't have to include this CV OUT and you can spread the 1V/Oct. signal over all VCO's with the Multiple. But I do advise to include it. If you daisy-chain your oscillators like this you keep the Buffered Multiple free for other functions and you can daisy-chain upto 8 oscillators of this design before you'll get a slight drop in voltage in the 1V/Octave signal.
Synchronizing multiple VCO's:
I recently added two more outputs. One is parallel over the squarewave output socket and is used to connect the VCO to the negative Hard Sync of one of the other VCO's, so I can keep the Squarewave output free for normal use. The other output is in parallel over the triangle wave output and is used to connect the hacked Joyo tuner to the VCO, also to keep the Triangle output free for normal use. These outputs are not on any of the pictures or on any of the layouts but you can easily add them if you feel you need them. I find them very useful. If you want to synchronize multiple VCO's then just take a squarewave out from the main VCO into the Negative Hard Sync input of the second VCO. Take a squarewave out from the second VCO and connect it to the Negative Hard Sync of the third VCO etc. Now if you turn the Frequency Control of VCO-1 all the other VCO's will stay synchronized with the first one. Now you see why the extra outputs are so handy to have. The main function of the sync options on this VCO is actually not to have them track together but to create more interesting sounds. If you input a VCO signal into an other VCO's Hard or Soft Sync input you can get some really cool results if you change the frequency of the input VCO. If you never tried this I strongly recommend experimenting with this.
Doepfer A-190-3V MIDI to CV:
The Doepfer A-190-3 is the one module that I bought because I didn't trust myself to build one of these and I wanted the interface between the keyboard and the synthesizer to be absolutely fool-proof and reliable and it was certainly worth the €130 I paid for it. You can connect any keyboard, that has a 5 pin MIDI output, to it and it will output a 1V/Octave Control Voltage. It adds a Portamento (or Glide) function to the synth and besides the normal CV out it has 3 extra outputs for the modulation and pitch-bend wheels on the keyboard that you can connect to CV-2 for instance to get pitch-bend. It also has a Velocity output and a 'Learn' option on CV-4. It will assign CV4 to any mod wheel or knob that you touch on the keyboard. And it also has a USB input so I can connect the synth to my computer. Naturally it also produces a Gate signal for the Envelope Generator. The voltage of all the outputs can be set with jumpers on the circuit-board. I got the A-190-3
V which is the Vintage edition which means the panel is black with white lettering to stay in keeping with the other panels in my synth. It's only 5 more euro's than the normal silver edition. I just made a 20cm high panel and cut a Eurorack sized hole in it. I first made it from cardboard so I could easily adjust the size of the hole and when it was ready I transferred it to an Aluminium panel and mounted the Doepfer in there. Then I made a special adapter cable to go from the Eurorack power system to the one I invented for my own synth. (See
powersupply article).
OCTAVE SWITCH:
With VCO number four I changed the Octave potmeter for an octave switch, as an experiment. I used a 10 step rotary switch and I measured out a bunch of 10K resistors so I had 10 with the same resistance upto 10 Ohm accuracy. They were all 9K99. I soldered on the resistors in the way shown in the drawing below:
So you get 5 Octaves up and 4 Octaves down with a 10 step switch. If you want -5/+5 you'll need a 11 step switch and I think they are rare ^___^. This is more than enough though.
Now, this works but it is not the case that when you turn the switch you land on the exact same note as the previous Octave. To try and address that problem I exchanged the 10K resistor connected to -15V for a 10K multiturn potmeter, with a 2K resistor in series with it, going to -15V. Now it's not possible to tune it so it is spot on but I did manage to tune it so that each octave I go up, I can turn the Fine Tune one stripe up on the dial (decal) and I'm in tune. So you switch one Octave higher, you turn Finetune to the next stripe on the dial and you're bang on. And the same but backwards for switching down the octaves. This works well enough for me :) This will really only work well if you also have a hacked
Joyo tuner connected to the VCO so you can see what you're doing.
To get this bang on the right note, you would need to experiment with the 3M3 resistor and try to buffer this potmeter and use really accurate resistors. So I wouldn't advise this switch solution, as it is presented here, for any serious project where everything needs to work perfectly. I'm just documenting it here because it is something I personally tried and want to keep a record of.
Here's a picture of the switch in the panel:
The output waves:
And finally a look at the waves this oscillator puts out. All nice clean waves as may be expected from the AS3340 chip but the ringing issue in the downward slope of the squarewave, which I mention in article 2 of this build series, is still there even in this design. Although it is significantly less prominent. This ringing must be common to this chip or something. Anyway, it's not audible so no real problem. I thought the zener diode over the squarewave output resistor might help to eliminate this problem but it has no influence but you can see from the pictures below that there are only a few spikes and only on the lowest notes. The picture below shows the ringing at note C1. Only 3 spikes! They only occur on the downward slope of the squarewave and they have a frequency of 28kHz so well above human hearing capabilities.
At note C3 there's only one spike left and after that it is completely clean. Maybe it adds to the character of the sound though. Who knows ^___^
Squarewave. You can see that the ringing is not even visible once you zoom out on the oscilloscope image:
Here's the ramp wave:
And this is the triangle wave:
Just for fun, here's a Triangle and a Ramp wave after being mixed together and after it's been through the dual Korg MS20 filter. You can see the high frequency resonance, produced by the filter, on parts of the wave form:
You can see that the output voltages are all around the 10 Volt except for the squarewave which is 13.4 Volt. I recently received a batch of 10 Volt Zener Diodes from China and I have soldered those in over the squarewave output and now all signal outputs are at the same 10Vpp level. Perfect! You might have wondered why there is a 2K resistor (R22) in series with the squarewave output. Well, it's there to make the Zener-diode work. Zener-diodes always need a resistor in series with them for them to function as voltage regulators.
If you want the output waves to be -5V to +5V for the Eurorack standard than all you need to do is put 1µF/25V electrolytic capacitors on the 3 outputs. Connect the plus pole to the wire with the waveform and the minus pole to the output socket. That will take away the +5V DC offset, resulting in a -5/+5V signal. The electrolytic capacitors must be rated for 25V or higher. You can use values between 1µF and 4,7µF.
I made a little demo video showing the main features of this VCO. Sorry it's not very good, speech is not loud enough. Don't be fooled by the scope image, the signal really is 0 to +10Vpp but the scope measures the VCA output and that is -5/+5V. The VCA is also the cause for the slight rounding in the saw- and triangle waves. You can not hear that in the sound though. The VCA works fine. Btw, this video was made before I added the Sinewave option so that is not demonstrated here:
TUNING THE VCO:
This VCO has 3 trimpots for tuning but we're only going to use 2 because the High Frequency Tracking or Linearity potmeter is not really effective for the lower octaves. So we leave that in the middle position. I have developed a tuning procedure of my own that is very simple and will get this VCO in tune over many octaves in less than 15 minutes.
If you don't have a useful tuner for calibration purposes but you do have a smart-phone then I recommend you download the 'Universal Tuner' app by Dmitry Pogrebnyak. It's available in the Google Play store for free. Of course any tuning app that displays frequency and notes will do. There's plenty to choose from.
Before we start tuning, turn the
Coarse Tune or
Octaves potmeter off with the switch on the panel and set the
Fine-Tune potmeter in the middle position. In the original text the wire connected to the wiper of the
Fine Tune potmeter is de-soldered, but I recommend just leaving it in the middle position. Take a little screwdriver and turn trimpot A up about 3 quarters of the way. Now go to trimpot B and turn that down about 3 quarters of the way (it's not necessary to be accurate with this and it also doesn't matter which way you turn them. It's just for setting a start position.)
- Launch the Universal Tuner app. or the tuner of your preference.
- Open up the 'Gain' potmeter on your VCA so you get permanent sound.
- Now press key
C5 on your keyboard and turn Trimpot
A until note
C5 is in tune on your tuner.
- Now press key
C2 on your keyboard and turn Trimpot
B until
C2 is in tune.
-
C5 will now be out of tune again so press key
C5 and retune it with Trimpot
A.
- Now
C2 will be out of tune again so press
C2 and retune it with Trimpot
B.
- Repeat these steps over and over until the VCO is in tune.
- You'll notice that you will need to turn the potmeters less and less to reach the C notes. After a few cycles of tuning they will be spot on their respective C notes.
- If you find that you need to turn the trimmers more and more to reach the C notes then switch potmeters and use A for C2 and B for C5
We tune with the Octaves control switched off to prevent variations in resistance from de-tuning our VCO. This keeps the VCO nice and stable but if you want it to be in tune with both control potmeters in the middle position then you can re-tune the oscillator after the first tuning session but now with the Octaves control switched on. It's up to you. :)
Be precise with the final tuning. Check the exact frequencies of the C notes. The app I mentioned will display the note graphically and it shows the frequency. You can get it in tune to at least 1/10th of a Hertz although in my experience you don't have to go more than one figure behind the comma.
Extra info for tuning on +/-12 Volt and using the V3340 chip:
As mentioned earlier, if you're running this VCO on +/-12V and you have trouble tuning it, change R4 from 200K to 270K or 300K. Someone kindly reported having trouble tuning this VCO on 12V and reported this as the solution in the comments below, so I thought I'd include it here. That's why the comments are so useful. If you come across problems like this please report it down below and we'll find a solution.
I've also had a comment on Facebook about the V3340 chip not holding tracking when used in this circuit. I have no further details on that, but just so you know. It's recommended you use either the AS3340 or the CEM3340 chip.
It will usually be the case, when we start tuning, that the notes are too far apart rather than too close together and if you repeat the steps above and keep switching between C2 and C5 and using trimmer A for the high note and B for the low note, you will notice, as mentioned before, that the notes get closer together and you'll have to turn the trimpots less and less to hit the right note. Eventually you will be spot on and the VCO will be in tune over at least 4 octaves. Be careful that you don't overshoot but you'll notice that soon enough if you have to turn the trimpots more and more to hit the right C note. In that case switch trimpots and use trimpot A for the low note and B for the high note.
You can of course use even higher octaves and other notes, like tune it between A2 and A7 for instance. I leave that up to you. I don't use C1 for tuning because it is so low my phone with the app has trouble tuning into it.
You'll get the hang of this tuning proces soon enough. It's really simple. It took me just 15 minutes after turning the VCO on to have it perfectly in tune, and when I say perfectly I mean perfectly! I was really chuffed about this ^____^
For those of you who want to go the scientific route and calibrate the VCO with a scope and an accurate voltage source and meter, I posted the original calibration procedure below here and it's also in the PDF I link to at the bottom of this article.
(click on text to enlarge)
Here's a little overview of features and technical data about this VCO:
Frequency range: 0.1Hz - 50kHz
Most accurate freq range: 5Hz - 10kHz
Waveform amplitude: 0V to +10Vpp
Octave adjust control range: +/- 5 Octaves
Frequency Fine control range: +/- 0.5 Octaves
+ and - Hard Sync
Soft Sync
FM input with level control
CV-2 input with level control
Pulse Width Modulation both internally controlled and externally controllable.
Extra CV inputs can easily be added by using 100K resistors connected to pin 15 of the VCO chip. Measure the resistance of the 100K CV input resistors and make sure they are all the same, that way anything you connect to the inputs will be in tune right away.
All outputs are protected and can be short-circuited continuously without damage to any components.
Synchronization and FM input:
The positive Hard Sync synchronizes on the rising edge of a squarewave and negative H.S. on the falling edge. I'm getting excellent results with the Negative Hard Sync and Soft Sync. They all work fine and FM also gives great results. I personally use the negative Hard Sync input for syncing up two or more VCO's. I input a square- or ramp-wave from an other VCO into Neg H.S. and then they both react to pitch changes of the main VCO. The FM input is also very cool to use. I can't describe how it sounds but if you build two of these and input one into the other and you turn the Octaves control back half an octave on the oscillator connected to the inputs, you're gonna get some great results. You can also input a Control Voltage from an LFO to get Vibrato or Tremelo effects. I demo this in the video.
Finally and by request, here's a list of individual notes and their corresponding voltages, should you want to tune the VCO without a keyboard, using an accurate voltmeter. Ignore the 'Expo Output' column. It is not relevant to this VCO:
Here's a picture of VCO's one, two and three. The third one is installed at the top in the second case of the Bergman-Berlin synthesizer. I installed a Sinewave output too in VCO-3, but that was after this picture was taken. :)
The picture below shows the latest VCO, number four, and it now also has a Sinewave output!
Something many people have been asking me about for a long time, but now it's here. The design is too big to be included on the original VCO stripboard layout so I made it on a small piece of stripboard that can easily be added to the original print with a M3 bolt and a little stand-off tube. Read the paragraph below here for more on the Sinewave option.
Here's a picture of VCO number four with the sinewave output and two switches for Triangle and Sinewave with or without a +5V DC Offset. (No offset = +/-5Vpp, with offset = 0-10Vpp):
ADDING A SINEWAVE OUTPUT TO THE VCO:
I added the Sinewave option to the VCO waveforms by adding an extra bit of stripboard with a Triangle- to Sinewave converter, the design of which I took from the schematic of the Thomas Henry VCO Deluxe which you can find in the 'Files' section of the 'Synth DIY for non engineers Facebook Group'. It's a very simple design so only needs a small piece of stripboard. I think you can easily figure out yourself the best way to add it to your specific VCO panel. I did not use the original Digisound 80 sinewave part of the VCO because it uses a CA3080 chip and there are a lot of fakes of that chip being sold. Anyway I tested that design and could not get it to work.
The Triangle- to Sinewave converter needs a Triangle input wave of +/-5Vpp and you can tap that straight from pin 12 of the TL074 Quad OpAmp chip on the main VCO stripboard. I have drawn an input socket on the layout but if you're building the converter into the VCO panel then just solder a wire straight from pin 12 of the TL074 on the VCO to the input of the sine converter. You can have two outputs for the Sinewave: a +/-5Vpp and a 0/+10Vpp one and you can use a switch like I did (see picture above) to choose which type you want or you can simply use two output sockets. A simple SPDT ON-ON Toggle switch will do fine. Solder each of the outputs to one of the top or bottom pins of the switch and then the output socket to the middle pin, making sure the outputs are nicely grounded the way it should be. You can tap the power supply straight from the VCO stripboard, that insures all the grounds are connected together like they should be.
I altered the feedback resistor (Rf on the layout) from 10K to 15K to get the amplitude correct with the other waveforms of the VCO. This had the effect that the +/-5V output got a negative DC-offset voltage which is why I put a 1µF capacitor in series with the output of the +/-5Vpp sinewave with the minus pole towards the source of the sinewave.
The output amplitude on a dual 12V powersupply is +/-4.2Vpp or 0 to 9.4Vpp. For a dual 15V power supply it is +/-5Vpp or 0 to 10Vpp.
Here's the layout of the Tri to Sine converter I installed in my VCO:
Triangle to Sinewave converter built into the VCO. This was my experimental stripboard so there's two TL072 opamps on there instead of the single TL074. As you can see, the VCO trimpots are still accessible:
Here's the schematic drawing:
Chapter three way back at the beginning of this synthesizer build series, deals with the Triangle to Sinewave converter and I have deleted the original article text and replaced the layout with this one because this one is much better and simpler. It works like a charm. That article also has pictures of the sinewave outputs.
NOTE: The VCO-Deluxe version with the tri- to sinewave converter and sub-oscillator all on the same print as the VCO, did not come through testing and I actually managed to blow up an AS3340 chip. So until I get new components for that project it's been put on ice for now. I'm actually concentrating on an other VCO design, without the 3340 chip (with sinewave option).
More extra's I added to VCO number four:
The panel I made for VCO number four is 2 centimeter less wide than the other 3 which are 10 CM wide. I included an output labelled 'Tuner' to which you can connect the
JOYO Tuner after you hacked it. That is connected in parallel over the 10V Triangle output, soldered to the 5V/10V switch directly. (This is not included in any layout or schematic because it was a last minute addition to keep the normal outputs free.) As I mentioned earlier I later also added an extra output in parallel over the Squarewave output to connect the VCO to the negative Hard Sync of an other VCO so as to keep the regular output free for normal use.
Okay, that's it for this one. I hope this is useful to you. After searching for a good VCO design using the AS3340 chip it was a real relief to see that this VCO performed so well and was so easy to build and tune too. I wish I found an article like this one when I first set out to build my first VCO but now I've written one of my own I really hope it will help out all those of you who are building their own synthesizer, maybe for the first time like me, and are looking for a good VCO design.
If you found this article useful or if you have any questions, please leave your feedback in the comments below. I would really love to hear from you. Share this article with your friends and follow this blog to keep informed of new posts. There are buttons for sharing on social media right below here. It would help to maintain this website. If you want to support my work you can buy me a coffee. There's a button for that if you're on a PC or MAC under the menu in the sidebar.
Thank you for checking my website out and see you on the next one! :)
Here is a link to the original PDF file with all the text and schematics and tuning procedures for the Digisound 80 VCO:
<click here to download or read the PDF file>
If you like these projects and would like to support the upkeep of this website and the creation of future projects then please consider giving your support by buying me a Coffee. There's a button for that underneath the main menu in the sidebar if you're on a PC or Mac. Alternatively you can use this
PayPal Donation Link to donate a few bob to keep al this going. All donations will be used to pay for components for future projects. Thank You!!