This module is a great solution for all your VCA needs. I needed a new VCA module for the second stage of my synthesizer and I wanted to upgrade from the first one I built, although it functions fine I hasten to add. This VCA is a more luxurious version of the first one you could say. And this one doesn't invert the signal like the first one did.
The function of a VCA:
You can see that I put a little white stripe alongside the counter clockwise first 20° of the throw of the Gain potmeter, to indicate to where you can turn the potmeter with the audio staying muted. If you turn it past the white, the signal becomes audible and normally the Gain should be slightly open but with in the white area.
The day after finishing this module I built two extra VCA's using the old layout and they work fine too. I wanted a few extra VCA's available but there was no need for the luxurious model. I'm going to use that as the end stage VCA in my second stage, with the output going to a HiFi mixer (at Line Out level) and use the other two VCA's for use in different patches.
Here's some pictures of the double model. I also posted these in the first VCA article:
Finally I want to leave you with this very informative video by Moritz Klein about the ins and outs of differential transistor VCA's. He explains why the transistors need to be matched and goes into the technical details of how a circuit like this functions:
Before I get ahead of myself, let me explain what a VCA does for all the people who are new to DIY synth building. A VCA or Voltage Controlled Amplifier, is used to stop your synthesizer from continuously making sound and to only produce sound when you press a key on your keyboard. So it's like a volume knob that is only opened up if it receives a signal from the Envelope Generator. Now the higher the voltage from the envelope generator (or ADSR) is, the louder the output of the VCA will be. VCA's can of course be used for other things, like in drum machines, as a sort of Gate, to let through short pulses of noise to create percussion sounds but this is not what we're going to be dealing with here. This VCA is primary used as the last stage in your synthesizer from where the audio goes to the HiFi amplifier and the speakers. But the output must be further attenuated to make it suitable for the line in of a HiFi amplifier. In fact the term 'Amplifier' in VCA is a bit misleading. It should be Voltage Controlled Attenuator because when the VCA is fully open the output signal will have the same strength as the input signal. It has not been amplified.
So to sum up: The VCA lets through audio when it receives a signal from the Envelope Generator and it stops audio from passing through when there's no envelope signal present on the ADSR input of the VCA. Opening up the 'Gain' control will enable you to bypass the Envelope Generator Input and output sound/audio without pressing any key on the keyboard and therefor without any Envelope Signal being present but normally Gain is set to zero.
I hope that's clear but you can always ask me things in the comments if you need more info.
The VCA is capable of handling input signals of + and - 10V and outputs them at the same level if the audio and ADSR potmeters are fully opened up and if you use an Envelope Generator that outputs an envelope of +10Vmax. This VCA is perfect therefore to pair with the Yusynth 7555 ADSR from article 24.
If you need to output the signal to a HiFi audio amplifier or mixing desk then you must use extra attenuation. You can easily do this with a resistor voltage divider that divides the amplitude of the audio to one tenth of the input amplitude. If you then turn the audio and ADSR potmeter back, the signal will be low enough to go into the Line-In of a HiFi amplifier or mixer. There's an extra additional layout below to show you how you can do that.
As to running this VCA on a dual 12 Volt power supply; I don't think there will be any problems with that. After all the opamps and transistors all work fine on 12V so I think it's just a matter adjusting the trimmers. You could have an issue where one of the trimmers is turned all the way to its limit because of the lower voltage but I have no data on this so I can't be sure. The first VCA I describe in chapter 10 is purpose built for +/-12V so you can always build that one if you're not sure. I've build 3 of those so far and they work very well. As you can see on the layout below, this design has one extra potmeter compared to the earlier VCA I built, and that's the audio level control potmeter on the input, which is always a good thing to have.
If you need to output the signal to a HiFi audio amplifier or mixing desk then you must use extra attenuation. You can easily do this with a resistor voltage divider that divides the amplitude of the audio to one tenth of the input amplitude. If you then turn the audio and ADSR potmeter back, the signal will be low enough to go into the Line-In of a HiFi amplifier or mixer. There's an extra additional layout below to show you how you can do that.
As to running this VCA on a dual 12 Volt power supply; I don't think there will be any problems with that. After all the opamps and transistors all work fine on 12V so I think it's just a matter adjusting the trimmers. You could have an issue where one of the trimmers is turned all the way to its limit because of the lower voltage but I have no data on this so I can't be sure. The first VCA I describe in chapter 10 is purpose built for +/-12V so you can always build that one if you're not sure. I've build 3 of those so far and they work very well. As you can see on the layout below, this design has one extra potmeter compared to the earlier VCA I built, and that's the audio level control potmeter on the input, which is always a good thing to have.
The two BC547 transistors Q1 and Q2 must be a matched pair. It's enough to just stick them in the Hfe meter of your multimeter and select a pair that have the same Hfe value. When you measure them let the transistors cool a little after you touched them because their values will change with temperature.
Here's the verified stripboard layout. Wiring diagram:
Print only. Btw, the green wire-bridges indicate connections to ground:
Bill of Materials. The logarithmic potmeters are noted as linear types in the BOM. It hardly makes any difference it's just that a logarithmic taper sounds more natural to the ear but you can use whichever you prefer.
I found that the audio signal initially starts at 10V and then drops to about 6V. To counteract this you need to open up the Gain potmeter a little and then trim again so the signal is muted with Gain slightly open, This will stop the voltage drop of the signal and keep it at full power all the time. You will see this soon enough if you start testing it and connect this circuit to a scope. It's easy to counteract and it is in itself not a real problem because you hardly hear the voltage drop but you know, I strive for perfection ^___^
Trimmer A1 is the Balance trimmer. You set it so that the part of the signal that is above the zero Volt line has the same level as the part below the zero Volt line. In other words, you set it so that the signal has the same amplitude in both the positive and the negative part of the wave. This is best done using a triangle or sinewave on the input, together with an oscilloscope.
For trimmer A3 I advise to use a multi turn one. With this trimmer you trim away any DC Offset voltage on the audio output. Again you absolutely need a scope to do this but a cheap 20 dollar one will do nicely here.
The circuit has a LED that indicates the presence of an audio signal on the input. It's a sort of one LED VU meter and the brightness varies with the strength of the audio signal. If you turn the audio input level potmeter up, the LED becomes brighter.
Here are some pictures of the finished product. If you look carefully you can see the electrolytic capacitor on the audio output. This is the AC audio output option to prevent any DC offset voltage on the audio output signal. If you are going to use this VCA with very low frequency signals, like from an LFO, you need to use the DC output option: (If you're a beginner then don't worry about that, use the AC output.)
(Last revised: 16-Aug-2021: corrected a mistake at the input opamp.)
This is the schematic from which I made the layout. In my build I have the 10µF electrolytic capacitors on the input as is shown in the schematic below. That means this VCA is an AC version meaning it can not handle signals from a Low Frequency Oscillator (LFO). If you need a VCA capable of handling very low frequency signals (a DC version) then leave out the 10µF caps on the input but for normal audio use LEAVE THEM IN! In my own build I also added a 10µF cap on the output (+ towards the opamp) as an extra failsafe against DC offset voltages on the output but you don't have to replicate that. (It's not in the schematic but it's in the layout as extra option.)
Bill of Materials. The logarithmic potmeters are noted as linear types in the BOM. It hardly makes any difference it's just that a logarithmic taper sounds more natural to the ear but you can use whichever you prefer.
LINE OUT:
If you want to use the VCA to feed a HiFi amplifier then you can use a little voltage divider network to further attenuate the audio output level to make it suitable for line out levels which are usually around 100mV to maximum 1V. I made a little extra layout to show you how you can add such a voltage divider to this stripboard. I used a 1M resistor and a 100K trimmer potmeter to divide the output voltage by at least a factor of 10. You can set the initial output level with the trimmer and then further adjust the level with the ADSR and Audio Level potmeters on the panel.
These extra components are not in the Bill of Materials!
Calibrating the VCA:
Before we start, do all the measurements on the 'Normal Audio Output', not the AC one. I added the AC output as an afterthought to block any DC offset voltages from coming through but normally you can use the the Normal Output. So connect your probe there for calibrating the circuit.
With trimmer A2 you set the initial bias voltage on the base of transistor Q3. This influences the working of the Gain potmeter and you should set it in such a way that with the Gain potmeter all the way closed the signal is just muted. If you turn Gain up the last played note will then become audible without pressing any keys on the keyboard. So Gain is normally closed.I found that the audio signal initially starts at 10V and then drops to about 6V. To counteract this you need to open up the Gain potmeter a little and then trim again so the signal is muted with Gain slightly open, This will stop the voltage drop of the signal and keep it at full power all the time. You will see this soon enough if you start testing it and connect this circuit to a scope. It's easy to counteract and it is in itself not a real problem because you hardly hear the voltage drop but you know, I strive for perfection ^___^
Trimmer A1 is the Balance trimmer. You set it so that the part of the signal that is above the zero Volt line has the same level as the part below the zero Volt line. In other words, you set it so that the signal has the same amplitude in both the positive and the negative part of the wave. This is best done using a triangle or sinewave on the input, together with an oscilloscope.
For trimmer A3 I advise to use a multi turn one. With this trimmer you trim away any DC Offset voltage on the audio output. Again you absolutely need a scope to do this but a cheap 20 dollar one will do nicely here.
The circuit has a LED that indicates the presence of an audio signal on the input. It's a sort of one LED VU meter and the brightness varies with the strength of the audio signal. If you turn the audio input level potmeter up, the LED becomes brighter.
Here are some pictures of the finished product. If you look carefully you can see the electrolytic capacitor on the audio output. This is the AC audio output option to prevent any DC offset voltage on the audio output signal. If you are going to use this VCA with very low frequency signals, like from an LFO, you need to use the DC output option: (If you're a beginner then don't worry about that, use the AC output.)
Normally the AC input is used for all audio signals and the DC input is used for Control Voltages.
You can see that I put a little white stripe alongside the counter clockwise first 20° of the throw of the Gain potmeter, to indicate to where you can turn the potmeter with the audio staying muted. If you turn it past the white, the signal becomes audible and normally the Gain should be slightly open but with in the white area.
The day after finishing this module I built two extra VCA's using the old layout and they work fine too. I wanted a few extra VCA's available but there was no need for the luxurious model. I'm going to use that as the end stage VCA in my second stage, with the output going to a HiFi mixer (at Line Out level) and use the other two VCA's for use in different patches.
Here's some pictures of the double model. I also posted these in the first VCA article:
Finally I want to leave you with this very informative video by Moritz Klein about the ins and outs of differential transistor VCA's. He explains why the transistors need to be matched and goes into the technical details of how a circuit like this functions:
TIP: Instead of using a CV signal to open and close the VCA why not try an other audio signal? That way the VCA will act as a (sort of) ring modulator. It's actually AM or Amplitude Modulation. Change the frequency to the lower/bass areas and experiment with modulating the VCO. You can get some weird sounds going that way.
So that's an other one done. One more and I'll have published 30 synthesizer related projects.
Okay, if you have any comments or questions please put them in the comments below or post them in the Facebook Group for this website.
If you find these projects helpful and would like to support the website and its upkeep then you can buy me a Coffee. There's a button for that underneath the menu if you're on a PC or Mac. Or you can use this PayPal.Me link to donate directly. All donations go towards the website and projects. Thank you!