Showing posts with label veroboard. Show all posts
Showing posts with label veroboard. Show all posts

Wednesday, 12 February 2025

Synthesizer Build part-65: YAMAHA CS FILTER w IG00156

 A LP, BP and HP filter in one chip. Not a filter you can just decide to build on a whim though. It uses Yamaha's own IG00156 VCF chip which is very rare and very expensive if you can find one. Like three figures expensive. This projects deals with a Eurorack version of this filter but of course it will work equally well for Kosmo sized synths.

PCB'S AVAILABLE ON REQUEST. Contact me on Facebook messenger. (2 in stock). They are 6 by 8 CM in size. The boards work fine but miss a connection you must make yourself but it couldn't be easier, just connect pins 1 and 9 of the IG00156 chip with a wirebridge.



A good friend of this website, a fellow Dutchman who happens to be an amazing psy-trance producer by the name of Jake Jakaan, signed to a top record label, who uses modules from this website gave me one of these chips. He managed to get hold of a few of them. He states this filter is great for filtering FM sounds from the TH VCO555. It's very low-mid heavy.
It was not easy to find a good schematic for this filter. In fact, all I had was the service manual for the CS-5 and a stripboard layout that someone put together which looked very dodgy and had some mistakes in it (although it did seem to work for my friend but I didn't use it).
I made a completely new schematic for this filter using the original circuit from the service manual and from that I made a new layout, small enough to fit a Eurorack system. The layout turned out to work faultlessly straightaway for which I was very grateful because the IG00156 is not a chip I'd like to blow up. The chip is actually quite robust, I found.
There are two things that are unique to this filter; it has a frequency dependent Q (resonance peak) and a gentle single pole lowpass effect. Resonance (Q) is achieved by damping rather than using a positive feedback loop and because damping will not go to zero the filter can not self oscillate.
This filter is used in all of the Yamaha CS range of synthesizers. Even in their flagship synthesizer, the CS-80. It's a two pole 12dB/Oct. state variable filter. In the CS-80 one chip is used for a lowpass filter and a second one for a highpass filter and in other CS synths like the CS-5, one chip is used for lowpass, bandpass and highpass. The filter I present here has all three functions under a switch although you could have each output go to its own socket but then you have to redesign the output stage or simply bypass the output opamp which I wouldn't advise. You should have opamps with a little bit of gain on the outputs.
Here is the schematic I made and on which I based the layouts below:


Here's a block diagram of the inside of the IG00156 chip:

Source: Yamaha IC Guidebook.

There's an in depth analysis of this filter on the Modwiggler forum: CLICK HERE to read that.

I added an audio level control on the input because this filter is rather sensitive to high volume levels. I also added a gain potmeter on the output that gives you the option to set the gain from 2 to 4 times with a 100K potmeter. That is more than enough, but if you want more gain, put in a 500K potmeter which will give you 12 times gain, or 1M which will provide 23 times gain. It will just clip. There's no use in doing that. I really wouldn't advise it.
The schematic says to use +/-15V but I tested it on a dual 12V powersupply and it works fine. The chip inputs for the cutoff and resonance functions are very sensitive and the complete cutoff range is controlled by a voltage that goes from 0 to 0,25V. Only 250 milliVolt for the full range. This is achieved by the voltage divider consisting of the 22K resistor in the cutoff line and the 470 Ω resistor between pins 7 and 8 (or pin 7 and ground really). The potmeters for Cut-off and Resonance need to be fed with +10 volts so I added 1K8 resistors to the pins where the power comes in to cut off roughly 2 volts. You can actually use other values for these potmeters because they're only used as voltage dividers but then you will have to re-calculate the values of those two resistors to make sure the pots receive +10 volts. For instance, if you use 100K potmeters you're need to use two 18K resistors.
I used this schematic to make my stripboard layout which wasn't that difficult because it's quite a simple filter. There aren't many components in it. It worked straight away although at first I couldn't get it working because I had not wired everything up yet. I thought I had connected all the knobs I needed for testing but I forgot the V/Oct input. That needs to be connected to ground if it is not in use and once I had done that the filter sprang to life. After testing I added a V/Oct section to the stripboard layout as explained in the next paragraph.

VOLT per OCTAVE INPUT:
At first I had the V/Oct socket grounded through the socket switch but then I realized that isn't needed because the V/Oct input is always connected to ground via the 470Ω resistor. 
I applied a voltage divider to the V/Oct input consisting of an 18K and a 470Ω resistor, I went with an octave range of 8 octaves, meaning that the input would get 8 Volts at maximum which would need to be reduced to the same range as the Cutoff input because they all enter the same summer inside the chip (see diagram above). 18K with a 470Ω would give 0 to 203milliVolt which works out perfectly.
Because the filter can not self-oscillate anyway, the filter can not be used as a sinewave oscillator with the resonance fully open. So accurate volt per octave tracking is not an issue and therefore none of these calculations need to be super accurate, it just needs to work so that it sounds good and the filter now tracks nicely up with the octaves.

LAYOUTS:
Here are the layouts I made for this filter. As always they are verified, I used them for my build. As you can see it's a really simple project. There's only 25 resistors, a few capacitors and wirebridges and the chip sockets to put in. The biggest job will be the wiring up of the potmeters and sockets and the making of the panel.

Wiring diagram. Note that the Resonance potmeter is connected the other way around from all the other potmeters, with ground at the clockwise lug. This is usually the case in VCF's.  


Stripboard only:
It's best to use bi-polar or none polarized capacitors for the 1µF caps in the filter outputs and on the audio input. This is because we're dealing with bi-polar signals that go through the zero Volt line. The caps don't need to be this specific value. You can use anything between 1 and 10µF without problems.
As you can see all three filter outputs have a 100K resistor to ground. Together with the 1µF capacitor this forms a highpass filter with a cutoff frequency of 1.6Hz so in effect it keeps DC voltage from passing and all the other frequencies get through. Make sure you use high quality capacitors for the two 1,5nF filter caps. I used Polystyrene ones which always sound the best.


Cuts and wirebridges. As always, mark the cuts with a Sharpie or Edding pen on the component side and then stick a pin through the marked holes and mark them again on the copper side. Then cut the strips at the marked positions with a sharp hand held 6- or 7mm dril bit. Make sure you work accurately!!


And here is the bill of materials. It won't be easy to find an IG00156 chip. They are long out of production so your best bet is websites that sell rare synthesizer components. They go on Reverb for $189,- but that is top dollar. They should go for between $70,- a $100,- 
I did not include any bypass caps or extra electrolytic caps for the voltage rails. If you want to include those you need to add them to the list (2 x 100nF and 2 x 10µF/25V). They're not on the layout or schematic either but there's room enough on the stripboard to put them in over the voltage rails.
The two trimpotmeters should really be the normal kind and not multiturn trimmer. There's really no use in having multiturn trimmers because there's no need for that kind of accuracy.


NOTE: There is a Hongkong based listing of the IG00156 chip floating around on the internet selling them for €10,- Don't fall for that, it's a scam!!

PICTURES:
Here are some pictures from the build proces:


All components soldered on:


Testing:


Drilling the panel using a copy of the panel design I made in Photoshop as a dril guide:


Waterslide design applied to the faceplate and now drying on the central heating. All the creases you see will be gone by the time this is dry.


Finished panel ready to receive the pots and sockets etc. After the waterslide design has dried we cut out the holes with a very sharp hobby knife and then apply two more layers of clear acryllic lacquer and let it dry overnight.


Finished module. The module is 14hp wide (7 CM) and 3.7 CM deep.


I only had a 4 way rotary switch, that's why the HP mode on the panel has 2 settings. Lugs 3 and 4 of the switch were connected together.
Side view:


Side and back view:


Here's an oscilloscope screenshot of a squarewave wave in LP mode with full resonance applied:



CALIBRATING THE FILTER:
There are two trimpots on this filter that need to be set.
The first one is the 100K trimpot. You use this to set the throw of the Cut-Off potmeter. Set it in such a way that you get the most resolution of the Cut-Off potmeter.
The other one, the 200K, is used to set the Resonance to maximum. Turn up resonance and turn the trimmer until you're at max resonance. This will probably be around the middle of the trimmer at about a 100K.
It's best to have normal trimpots not multiturn ones. There's no need for those and the normal trimpots are easier to use.

VIDEO DEMO:
Here's the first test I did after finishing the project. This filter literally makes the room shake. If you turn up the volume (with good speakers or headphones) you will hear stuff starting to rattle in the background. It's a very bass heavy filter which really sounds great!


Here's a short demo I made with the X4046 VCO hard synced by the 555 VCO going through the filter.


Here's an other video I found on YouTube dealing with the CS-5 Lowpass filter:


Here's a Facebook video of my friend Jake Jakaan using 3 of these filters in bandpass mode to create a formant filter that makes sounds akin to human speech.



Okay that's it for this article. Not a filter anyone can build alas but this website is an archive of all the modules I built myself so it certainly belongs here. I also noticed that Yamaha filter schematics that specifically deal with the CS filter are almost non existent on the internet except for the service manuals. So I hope this article will provide at least one good schematic for those looking for it.

If you have any questions or remarks about this project then please put them in the comments below or post them on the special Facebook group for this website.




Wednesday, 18 December 2024

Synthesizer Build part-63: FASTEST ADSR IN THE WEST by Rene Schmitz.

The fastest ADSR in the West. A simple to build and fully featured Envelope Generator. I thought it was about time for another ADSR project for the website and this one worked out great and it has no trimmers to set. I even added a few extra's to make it even better.

This is an other 7555 based envelope generator like the YuSynth one from project 24. Some people seem to have problems with that one so that's why I choose to do this project now.
This ADSR will work on both +/-15V and +/-12V. At +/-12V the maximum envelope amplitude is just under 8 Volt. If you run it on +/-15V the peak envelope value will be 10 Volt. It's a very fast Envelope Generator. The minimum risetime of the signal is 1mSec or 1/1000th of a second.
Now this is roughly the same setup as in the previous 7555 ADSR from project 24 but it does work a lot better, especially when using Schottky diodes. The whole problem with the DC offset voltage left on the ADSR output comes down to the forward voltage drop of the diodes. That's why Schottky's are so useful because they have only a third of the voltage drop of silicone diodes. Now what would be even better is to have diodes with no voltage drop. To achieve that we have to put the diodes inside the feedback loop of an opamp. That's what happens in the Kassutronics Precision ADSR which I recently also added to the website as project number 67.
So this ADSR and the Yusynth 7555 ADSR have become a bit obsolete now, eventhough they work just fine for use with VCA's and for Filter CV signals. I would advise anyone wanting to build an ADSR to go to project 67 and build that one.

SCHEMATIC:
Here is the schematic for this circuit. I've redrawn it from the sketch posted on Rene Schmitz website.
The opamps are numbered in the order they are used on the stripboard. All diodes have been replaced with Schottky diodes which work much better in this circuit.


Click here for a FALSTAD SIMMULATION of this circuit.

I've added some extra's to this design. The original design only uses two opamps but I wanted to include a LED and also an inverted output so I decided to use a quad opamp, the TL074, and include an attenuverted output where you can have in inverted envelope signal with the potmeter turned fully counter clockwise, attenuation with zero signal when the potmeter is at the 12 o'clock position and a normal envelope when the potmeter is turned fully clockwise. I took the design from the AD/AR attenuverter mod from Ole Stavnshoej design (project 44). This is a great option to have when you use the ADSR with a filter. Turning the attenuverter will give the filter some very cool resonance response.
I decided to adapt the design to more run of the mill parts, like for instance I used 1M potmeters instead of the 2M2 ones in the original schematic. I changed the 220Ohm resistors to 100Ohm types and the capacitor from 2µ2 to 4µ7 to keep the original timebase intact. This is all explained in the text underneath the original schematic on the Schmitzbits website.
The circuit is relatively simple so I was able to build it up on a very eurorack friendly sized piece of stripboard. It's only 21 strips by 33 holes. Although I left the V,W and X strips on the board, they are not populated. You can use them to connect L brackets to mount the board to a panel. The three transistors on the Gate input represent the same setup as we've seen before in the Yusynth 7555 ADSR only there he had no resistors at the base of transistors 2 and 3. It works as follows: the first two transistors make up a schmitt trigger which turns any input signal into a sharp gate signal. That signal now goes through a capacitor that turns any long gate signal into a short pulse. That pulse is inverted in the third transistor stage to make it acceptable for the 7555 chip, going in at pin 2. 
Once the ADSR has been triggered the sustain level for that cycle is frozen. You can not add sustain while the ADSR is in its cycle, unlike the Digisound ADSR which can do this. Not that that's important. it's just something I noticed while testing the circuit.
The 1M resistor, in red on the schematic and in purple on the layouts below, can be added to provide for some input hysteresis. This will improve triggering on slowly changing waveforms. In the layout below, the purple 1M resistor on the left indicates where it should go if you want to include it. I left it out. Only include it if you really think you're going to need it. If in doubt, Leave it out.

LAYOUTS:
Here are the layouts I made for this project. As always they are verified. I used them to build my module. It's important to use logarithmic 1M potmeters for Attack, Decay and Release. The time based parameters. Otherwise it will be much more difficult to set these parameters accurately. It will work with linear types but get logarithmic pots for these. Sustain is a level control so that can and should be a 10K linear type potmeter.
I used Schottky diodes throughout this design because with 1N4148 diodes there's a DC offset voltage present on the output. Using Schottky diodes helps to prevent that.

Wiring diagram:


Stripboard only:
Again, leave out the purple 1M resistor unless you're going to feed this ADSR with slowly changing Gate input signals. Nor likely so leave it out.


Cuts and wirebridges seen from the component side. You know the drill by now; mark the cuts on the component side with a Sharpie or Edding pen and then stick a pin through the marked holes and mark them again on the copper side. Then cut at the marked places with a sharp, hand held, 6- or 7mm drill bit.


Here is the Bill of Materials. I altered the diode types to Schottky diodes because they will work much better in this design. I put in the BAT4* series (like: BAT41, BAT42, BAT43 etc) because they work really well and have good availability in webshops. Any Schottky diode will do though.



OSCILLOSCOPE IMAGES:
Here are some screen shots from my oscilloscope to give you an impression of what the signal looks like. All testing was done with a +/-12V powersupply:

Here's the normal envelope output. The envelope signal does have a small positive offset voltage of 400mV I noticed. But this won't cause any VCA to stay open so it's of no consequence. 
However I changed the diodes for Attack and Release into Schottky diodes and that reduced the offset to just 16mV (16 thousandth of a volt) which is the same as 0V to me. The offset voltage is the result of the fact that the 4.7µF cap has to discharge through a diode and a diode has a voltage drop over it of about 0.6V (with silicon diodes). So the lower that voltage drop the better. With Schottky diodes the voltage drop is only about 0.2V which allows the cap to discharge as good as fully.


Here's the normal output in yellow and the inverted in blue coming from the attenuverter mod I added on myself. It works like a charm.


Here you can see, in the blue trace, the attenuverter in action. I'm turning the potmeter as the trace goes from left to right.


This is the signal at a pretty high rate at almost 3Hz. No problem for this ADSR.


In yellow you can see the pulse as it comes out of the third transistor and into pin 2 of the 7555. It's a inverted pulse, triggered by the gate signal, that starts the ADSR.


This time the yellow trace is the gate signal at the input. This was measured after the 10K input resistor. The gate signal was a +/-5V pulse wave from an LFO.


PICTURES:
Here are some pictures from the build proces.
Stripboard with cuts and wirebridges done.


Finished stripboard ready for wiring up.


All wired up ready for testing


I decided to use this ADSR for my DIY Kosmo synth and not for Eurorack so I took the YuSynth ADSR and replaced the stripboard with this one. I had to widen one hole to fit the attenuverter potmeter to which I added a bi-coloured LED to fill up another hole where a switch had been. I used a 4K7 resistor to connect it to the attenuverted output socket. I also re-used the manual trigger button that was already present in the panel. I took two 47K resistors and made a voltage divider so when I press the manual trigger it sends 7.5V to the gate input. (My DIY synth runs on +/-15V mostly).
Backview of the panel:


Here's what it now looks like mounted into the synth. My ADSR module has two Gate inputs each with a Schottky diode in series with the socket (soldered straight to the socket). This is to prevent +7.5V entering the Gate socket when I push the manual trigger button.


Luckily I could re-use the potmeters, which were 1M logarithmic types with a 10K linear pot for the sustain, the same as in this project.
You can see the blue LED underneath the attenuverter potmeter. The hole I had to fill up was 6mm and this LED is only 3mm so I used hotglue and made a sort of white blob that lights up red or blue. Worked out pretty well :)
I kept the dual gate inputs from my previous ADSR because I think it's handy to have. The gate inputs have Schottky diodes on them so that when I push the manual trigger button I don't get 7,5 Volt pushed into the gate patch cable(s). It's a safety feature I advise you to copy if you are going to include a manual trigger button.
Troubleshooting tip: If your Decay and Sustain are not working then the most likely cause will be a broken Sustain potmeter. It happend to me when I built it into the panel I used for the YuSynth 7555 ADSR and it turned out it had a broken Sustain potmeter all the time.

DEMO:
Here's a video I found on YouTube of someone demonstrating this ADSR in action. He's using it on the cutoff of a lowpass filter. Sounds pretty sweet. If he had the version with my attenuverter mod it would have sounded even better LOL ;) 



So that's another one done. I thought it was about time for a new ADSR project on this website, especially since some people seem to have problems getting the YuSynth 7555 ADSR of project 24 to work right. That's weird though because I always rated that one as near perfect but I think this will make an excellent alternative especially with the extra's I added. I'm really chuffed that it worked so well. Okay, I hope you will enjoy building this one. 

If you have any questions or comments about this project then please post them in the comments below of on the special Facebook group for this website.


Tuesday, 6 June 2023

Synthesizer Build part-53: RINGMODULATOR with AD633 for Eurorack.

This is the MFOS Ring-Modulator based on the AD633 analog multiplier chip and it sounds awesome. It's very small and will easily fit a Eurorack system so naturally no problem for a Kosmo system either. This ring-modulator is perfect for creating bell sounds and all sorts of timbres.

This is the first article in which I did not actually build the project myself. I was asked by one of our Facebook members, Justin Andrews, to make a stripboard layout for a schematic that he found. It sounded like an ideal little project for the website so I set out to make the layout. Justin built it up and it worked like a charm first go. The AD633 is a small DIP 8 Analog Multiplier chip and they can be a bit pricey. They cost about €22,- each. The MFOS article states they are cheap but they seem to have gone up in price. Make sure you get them from a reputable source though, not from AliExpress for a few dollars. Those will be 100% fakes! I looked around and it seems they are no longer in production but there are still electronics webshops who have them in stock so they shouldn't be hard to find.
The other chip in this circuit is a single opamp, the LF411. I don't know why this type was chosen over the normal µA741 and I suppose you can use a 741 if you wish. The pinout is the same. Only the actual opamp connections of the chip are used not the offset controls. The 43K resistor is a bit of a strange value. You can get away with a 47K too I reckon. Not even the 2,2µF input caps need to be specifically that value. They are DC blockers and in that function you can use 1µF upto 4,7µF without any problems. Together with the 100K resistors these caps form a highpass filter with a cutoff frequency of 1.6Hz if you use 1µF for the caps. It's even lower with higher values so no influence on the sound what so ever whatever value cap you use.
Here is the link to the full article on the Music From Outer Space website.

SCHEMATIC.
Here's the schematic for this project. As you can see it can hardly be simpler and there are no trimmers to set so no calibration necessary. If you read the article linked above you'll see that right at the top Ray Wilson says not to build this project as it has been superseded by newer ones but that doesn't mean this design doesn't work of course. Far from it in fact. It works very well. It's just very basic in its setup.
Both inputs, the Carrier and the Modulation input, are AC inputs. They have an electrolytic capacitor in series with the inputs so this ring modulator is only for audio range signals, not for CV. In the MFOS article it is stated in the Bill of Materials that these should be ceramic capacitors so in fact bi-polar, but I would just put in electrolytic capacitors. That always seems to work just fine and they are used in many other projects for the same function without any problems.


The circuit has two settings: Modulate and Multiply. Justin's experience was that the Multiply mode had a more choppy sound with more artifacts and harmonics. You can see in the scope screenshots at the bottom of the article why that is.
The circuit needs signal at synthesizer levels to work well. The input is meant for 10Vpeak-to-peak signals so if you want to use it for lower level signal you are advised to amplify those first to at least a few Vpp before they enter the ring modulator. 
The circuit is designed to run on +/-12V but I don't see why it wouldn't run normally on +/-15V either.

There is an updated version of this ringmodulator called the Sonic Multiplier which is more difficult to build and has a quad opamp in it and uses an internal sinewave generator with an LM13700. I have not made layouts for it but here is the link to that project on the MFOS website:

LAYOUTS:
Here are the layouts I made for this project and they have been verified. Beware the size of the stripboard is only 16 strips by 26 holes. I see I made one little oversight in the layout design. It would have been better if I had put the power connector at the bottom instead of at the same side where the faceplate is meant to go. But it still works fine of course :) 
Beware the negative 12 Volt is the top connection and the positive 12 Volt is bottom connection of the power header.
Wiring diagram:


Stripboard only view:


Below are the cuts and wirebridges as seen from the COMPONENT SIDE! As always, mark the cuts on the component side and then stick a pin through the marked holes and mark them again on the copper side. Then you can cut them with a sharp hand held 6 or 7mm drill bit.


Bill of Materials. I typed this bill of materials in Notepad so it's a bit small:



PICTURES.
Here are some pictures of Justin's work. He did a great job and made a really cool faceplate for it too, in Eurorack size. 








The finished module. Justin used waterslide decals for the faceplate artwork and sealed it in with a coat of clear lacquer:


Oscilloscope screenshots:
Here are some scope screenshot combining different waveforms in both Modulation and Multiplication Mode so you can see the difference in processing. I put multiple images together in one to save some space.



DEMO VIDEO.
And finally a demonstration of the ring modulator in action.



So that's all for this article. Not much of a write up but then again there's not really much more to say about this Ring Modulator. It does its job and it does it very well. If you have any questions or remarks you can put them in the comments below or post them in the special Facebook Group for this website.

Sunday, 26 March 2023

Synthesizer Build part-52: 4 CHANNEL FEEDBACK EQ/DISTORTION (Monotropa) Eurorack.

A 4 channel feedback equalizer / distortion module that will fit a Eurorack system. 

I came across this circuit in a post on the LookMumNoComputer forum. Bpbby posted a Falstad simulation of this circuit and it intrigued me because I never heard of it before. He found the circuit on this website: www.reverselandfill.org

It's a pretty cool circuit. Simple too. We have 4 filters, each covering a part of the audio range, and then there's a feedback loop that connects the output back to the input. The circuit is called the Monotropa, which is the name of a plant. Don't ask me why. I don't see any logic in that. ^___^
Here's the schematic of this circuit:

Here is the Falstad simulation of this circuit:

LAYOUTS:
Here are the layouts I made for this project. They are verified as always. I built it for my Eurorack case but you can just as easy make this for a Kosmo sized synthesizer. I that case you could even build the 7 channel version because you'd have more space on the panel for the extra potmeters. Yes there is a 7 channel version of this circuit but you'd have to Google that. This article deals with the 4 channel version. This circuit is designed for +/-12V but I can't see why it wouldn't run equally well on a +/-15V powersupply.

Here's the wiring diagram. For the first time in the history of this website I show the potmeters from the back side! I should have done that all along because it's easier with wiring up the panel but there it is. I started out showing potmeters from the front in my layouts and for the sake of consistency I stuck with that, upto now. I had to connect some components straight to the potmeters and audio jacks to save space on the stripboard:


Below is the stripboard only view. The stripboard is small enough to mount parallel with the front panel behind the potmeters and sockets. You could drill a hole through the lower two strips which are not in use and use a standoff to mount it to the front panel. The wiring will also act as a stabilizing feature. I just used some plastic tube and hot-glued them to the back of the potmeters and to the copper side of the stripboard. That's secure enough. I soldered the powerconnector straight to the stripboard without using pinheaders and sockets. That way you only have 3 thin wires coming from the board with a Eurorack connector (female) on the other side to plug it in. If you want to use bypass/de-coupling caps there's room enough to solder those in over the powerrails and add some 10µF electrolytic caps if you want extra stabilization of the power supply voltage. These components are not in the layouts and are not listed in the Bill of Materials!


The Cuts and wirebridges as seen from the COMPONENT SIDE!!


Here's the Bill of Materials:


PICTURES:
Here's a look at the finished product:



Here are some screenshots from the oscilloscope showing the influence of the feedback on the output signal: 




And finally a little DEMO video I made. I built my version with 100K potmeters because that's all I had and consequently it doesn't sound as good as it could be with 10K pots. I assure you though, it is worth building but keep to the component values in the layout and schematics. Some potmeters are more effective than others depending on the frequencies that are put through this circuit because this is of course an equalizer. So a Low Frequency potmeter isn't going to have much effect on a high frequency bit of audio that's put through it. In the video I have it connected to a 555 VCO that is fed by the Sample and Hold of the previous project.


There's a useful tip in the comments below suggesting to use this EQ with a squarewave and then play with the Pulse Width Modulation of the squarewave in combination with the feedback of the EQ. That should sound pretty awesome!

Okay that's it for now. Not much of a write up I admit but real life issues got in the way. I might revisit this article later and expand on it. I hope you understand and don't mind. For now I just wanted to give you all the necessary layouts etc. to build this Feedback Equalizer. I already heard from one person who built it and he's very happy with it. If you have any questions please put them in the comments below or on the special Facebook Group for this website.